
René Vincent Jansen

ELMO
A live payment streams monitoring
web application with NetREXX and
JSON

27th International REXX Language Symposium -
Tampa, Florida, August 2016

ELMO

Agenda

❖ What ELMO does

❖ Where is ELMO?

❖ Interacting with ELMO

❖ How to make ELMO do things

Linda says:

We mainframe people have lots of tools, and we monitor like champs.
Unfortunately, none of these tools knows how the payment chain
works. But ELMO does! ELMO is my hero!

ELMO’s Purpose

❖ Capture application-level payment order status changes

❖ Monitor thresholds and show transgressions

❖ Assure the payment system delivers the required throughput

❖ Automate tedious manual work so there is more time to play!

ELMO the 1st generation

A bit of history

The need for ELMO was identified in October 2014. The first
version was delivered on November 12th, 2014, after a long
night of Company Hackathon.

This version ran on a 3270 terminal as an ISPF application.
Immediately, a version that runs on a smartphone was
requested.

This version was written in Classic REXX. The DB2 queries
were reused for ELMO-ng - the new generation, as was much
of the logic.

ELMO The New Generation

ELMO-ng

The new generation runs on open source Tomcat, with an
HTML5 GUI and a Java backend, written in NetREXX.

It tries to capture the status of the payments in clear
graphics.

The picture on the right shows the status of file transfers
to third parties.

Delays are flagged
 method fileconf() returns ArrayList
 /* rexx die beoordeelt of er te lang geen confirm is binnengekomen */
 /* op files die we uitgestuurd hebben*/
 equconfirm_waittime = 3600
 ebaconfirm_waittime = 1800
 gftbeconfirm_waittime = 5400
 EBAconf = this.da.uitgb22(993)
 GFTBEconf = this.da.uitgb22(994)
 EQUENSconf = this.da.uitgb22(995)
 a = ArrayList()
 -- /*equens logica*/
 -- /*tussen 1700 en 0000 geen terugmeldingen van equens*/
 if EQUENSconf.getwaittime() <> 99999 & (date("W") <> "Saturday" & date("W") <> "Sunday") -
 & (time('S') > 3600 & time('S') < 61200) then do
 if EQUENSconf.getwaittime() < equconfirm_waittime then EQUENSconf.setcolor("green")
 if EQUENSconf.getwaittime() > 1000 then EQUENSconf.setcolor("orange")
 end
 else do
 EQUENSconf.setColor("green")
 EQUENSconf.setWaittime(0)
 end
 -- /*EBA logica*/
 if EBAconf.getwaittime() <> 99999 then do
 if (date("W") <> "Saturday" & date("W") <> "Sunday") then do
 if date("W") <> "Monday" 3 time('S') > 25200 then do
 if EBAconf.getwaittime() < ebaconfirm_waittime then EBAconf.setcolor("green")
 if EBAconf.getwaittime() > 1000 then EBAconf.setcolor("orange")
 end
 end
 end
 else do
 EBAconf.setColor("green")
 EBAconf.setWaittime(0)
 end
 -- /*gft be logica*/
 if GFTBEconf.getwaittime() <> 99999 then do
 if (date("W") <> "Saturday" & date("W") <> "Sunday") then do
 if GFTBEconf.getwaittime() < gftbeconfirm_waittime then GFTBEconf.setcolor("green")
 if GFTBEconf.getwaittime() > 3600 then GFTBEconf.setcolor("orange")
 end
 end
 else do
 GFTBEconf.setColor("green")
 GFTBEconf.setWaittime(0)
 end
 a.add(EQUENSconf)
 a.add(EBAconf)

Elmo Speed Gauge

❖ The green status button changes color and
links to the problem when somewhere in
ELMO a threshold has tripped

❖ Two large speed gauges indicate the
number of milliseconds since the last
transaction of the specified type entered
SDP

Velocity and Contention Graphs

Velocity and locking

A modern mainframe is capable of sustained periods of
high-velocity transaction processing, necessitated by the
nature and volume of batch payments and direct debits.

At any moment we can see the transaction rate in created
payment_id’s per second, and the incurred database
contention, split out in locking winners and victims.

This forms the base for ongoing database maintenance
and tuning; also needed program changes are identified.

Tabular formats
There also is a tabular format for lists that are used for specific reports,
like the “online” query that is used for the checklist and the 07.15 AM
morning call.

I now look only at ELMO when composing
the morning status email!

ELMO Architecture

Asynchronous

❖ Where older (3270-ISPF) ELMO fired DB2 queries for every user to draw the
lines, ELMO-ng uses an asynchronous model

❖ The user looks via a web page served by an Apache Tomcat instance into a
set of memory buffers

❖ These buffers are asynchronously updated by a set of monitor threads

Two Patterns

❖ ELMO uses, mainly, two software patterns

❖ Singleton

❖ Observer / Observable

The Singleton pattern

Singleton

Of a singleton object, there is only one instance in the
system.

There is a naming convention associated with the
singleton pattern: every singleton class starts with The

In ELMO, we have the classes TheGatherer and
TheDataAccess.

The Observer / Observable pattern

Observer / Observable

The observer pattern is a software design pattern in which
an object, called the subject, maintains a list of its
dependents, called observers, and notifies them
automatically of any state changes, usually by calling one
of their methods. It is mainly used to implement
distributed event handling systems.

In ELMO, the Subject is TheGatherer, which inherits from
Observer and its dependents are threads that implement
the Monitor and Observable interfaces.

https://en.wikipedia.org/wiki/Design_pattern_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)#Objects_in_object-oriented_programming
https://en.wikipedia.org/wiki/Method_(computer_science)
https://en.wikipedia.org/wiki/Event_handling

package com.ing.sdp.elmo
import java.util.Observable
/**
 * Class TheGatherer implements...
 *

 * Created on: di, 27, jan 2015 14:13:56 +0100
 */
class TheGatherer implements Observer

 properties static
 instance = TheGatherer

 properties static public
 logger_ = Logger.getLogger(TheGatherer.class.getName())
 idealDelta = 99999
 mingDelta = 99999
 mobileDelta = 99999
 profDelta = 99999

 statusButton = String 'All Nominal
'

 -- data from contention monitor
 contentionData = ConcurrentHashMap()

 -- data for velocitymonitor
 velocityData = TreeMap()

 -- data for filetransfers
 confirm_result = ArrayList()
 in_result = ArrayList()
 out_result = ArrayList()

 -- data from throughput monitor
 throughputArray = ArrayList()

 -- data for Job abend monitor
 sdpJobAbendData = ArrayList()

Memory maps for
display data

instance field, to implement
singleton

TheGatherer 1

 method getInstance() returns TheGatherer static protect
 if TheGatherer.instance <> null then
 do
 logger_.info("TheGatherer: returning singleton instance")
 return TheGatherer.instance
 end
 else
 do
 TheGatherer.instance = TheGatherer()
 return TheGatherer.instance
 end -- do

 /**
 * private constructor enforces singleton
 */
 method TheGatherer() private signals ClassNotFoundException
 logger_.info("TheGatherer: start")
 t1 = IdealTransactionStatusMonitor(10000)
 t1.addObserver(this)
 Thread(t1).start()
 logger_.info("TheGatherer: started thread IdealTransactionStatusMonitor")

 t2 = ProfileTransactionStatusMonitor(10000)
 t2.addObserver(this)
 Thread(t2).start()
 logger_.info("TheGatherer: started thread ProfileTransactionStatusMonitor")

 t3 = ThroughputMonitor(10000)
 t3.addObserver(this)
 Thread(t3).start()
 logger_.info("TheGatherer: started

Singleton (can be fancier but this
fits the bill)

Start monitors in threads to
observe

TheGatherer 2

 method update(o=Observable,obj=Object) protect
 cl = o.getClass().getName()
 select
 when cl = 'com.ing.sdp.elmo.IdealTransactionStatusMonitor' then idealDelta = Rexx obj
 when cl = 'com.ing.sdp.elmo.ProfileTransactionStatusMonitor' then profDelta = Rexx obj
 when cl = 'com.ing.sdp.elmo.VelocityMonitor' then do
 v = Velocity obj
 velocityData.put(Rexx(v.getNow().toString()), v)
 end
 when cl = 'com.ing.sdp.elmo.ThroughputMonitor' then do
 throughputArray = ArrayList obj
 end
 when cl = 'com.ing.sdp.elmo.ContentionMonitor' then do
 contentionData = ConcurrentHashMap obj
 end
 when cl = 'com.ing.sdp.elmo.SDPJobMonitor' then do
 sdpJobAbendData = ArrayList obj
 end
 when cl = 'com.ing.sdp.elmo.FileTransferMonitor' then do
 select
 when obj.getClass.getName = 'com.ing.sdp.elmo.FileConfArrayList' then confirm_result = ArrayList obj
 when obj.getClass.getName = 'com.ing.sdp.elmo.FilesinArrayList' then in_result = ArrayList obj
 when obj.getClass.getName = 'com.ing.sdp.elmo.FilesoutArrayList' then out_result = ArrayList obj
 otherwise
 say 'filemonitor sent an unknown update object'
 end
 end
 when cl = 'com.ing.sdp.elmo.IbPostIDThroughputMonitor' then do
 t = ThroughPut obj
 sectprocessed = t.processed
 sectnotprocessed = t.notprocessed
 sectdiff30m = t.sectdiff30m
 sectdiff1h = t.sectdiff1h
 sectdiff2h = t.sectdiff2h
 sectdiff2h2 = t.sectdiff2h2
 end
 otherwise
 say 'could not find which observable to update'
 end

When a Monitor sends an update,
it is in the form of an Observable

TheGatherer 3

package com.ing.sdp.elmo
import java.sql.
import java.util.

/**
 * Class TheDataAccess is a singleton that takes care of all queries to the payments production environment.
 */

class TheDataAccess uses RexxDate

 properties private static
 jdbcCon = Connection -- to dpg1
 instance = TheDataAccess null

 method TheDataAccess() private protect

 method getInstance() returns TheDataAccess static protect signals ClassNotfoundException
 if instance <> null then return instance
 instance = TheDataAccess()

 -- get encrypted credentials
 c = Credentials('elmo.properties')
 userid = c.getUserid()
 pswd = c.getPassword()

 Class.forName("com.ibm.db2.jcc.DB2Driver")
 url=‘jdbc:db2://xxxx.xx.xxxx.intranet:XXX/NLXXX_XXX1’

 do
 -- make the connection
 jdbcCon = Connection DriverManager.getConnection(url, userid, pswd)
 catch e = SQLException
 printException(e)
 end -- do

 return instance

TheDataAccess 1

TheDataAccess 2

 method getcurrenttimestamp() returns java.sql.Timestamp
 timer = TimeIt()
 ts = java.sql.Timestamp null
 do
 sqlstmt = “ SELECT " -
 " CURRENT TIMESTAMP " -
 " FROM SYSIBM.SYSDUMMY1 " -
 " WITH UR "
 stmt = Statement this.jdbcCon.createStatement()
 rs = ResultSet stmt.executeQuery(sqlstmt)

 -- get the data rows
 loop while rs.next()
 ts = rs.getTimestamp(1)
 end -- loop while rs
 rs.close()
 stmt.close()
 timer.sayDiff('method getcurrentimestamp took:')
 return ts
 catch e = SQLException
 printException(e)
 return ts
 end

This is the one query I can
show you

package com.ing.sdp.elmo
import java.util.Observable
/**
 * Class Monitor implements...
 *

 * Created on: za, 14, mrt 2015 15:11:35 +0100
 */
class Monitor extends Observable

 properties public
 logger_ = Logger.getLogger(Monitor.class.getName())
 sleeptime

 properties static
 da = TheDataAccess null

 /**
 * Default constructor
 */
 method Monitor()
 this.da = TheDataAccess.getInstance()

Monitor (Superclass of all monitors, provides database (TheDataAccess) connection)

package com.ing.sdp.elmo

class ThroughputMonitor implements Runnable extends Monitor

 method ThroughputMonitor(s) signals ClassNotFoundException
 this.sleeptime = s

 method run()
 do
 Thread.currentThread().sleep(this.sleeptime) -- sleep for sleeptime seconds
 loop forever
 setChanged()
 notifyObservers(this.da.online())
 Thread.currentThread().sleep(this.sleeptime) -- sleep for sleeptime seconds
 end
 catch InterruptedException
 parse source s
 say "thread interrupted:" s
 end

a Monitor instance

A Monitor sleeps,
does a database call

and notifies its
observers

 method online() returns ArrayList protect
 timer = TimeIt()
 logger_.info("TheDataAccess: start method online")
 a=ArrayList()
 do
 crstmt = "DECLARE GLOBAL TEMPORARY TABLE PAYMENTTYPES (" -
 "NAME VARCHAR(40) " -
 ") on commit preserve rows " -
 ";"

 stmt = Statement this.jdbcCon.createStatement()
 stmt.execute(crstmt)
 stmt.close()
 this.jdbcCon.commit()

 instmt = "INSERT INTO session.PAYMENTTYPES " -
 "VALUES ('IDEAL WEB') " -
 "; "

well, I need to show a
little bit more here from

TheDataccess

It returns an ArrayList,
which is wrapped into
the Observable, which
updates the memory
maps in TheGatherer

 logger_.info('TheDataAccess: method online returned' a.size() 'lines to ThroughputMonitor.')
 timer.sayDiff('method online took:')
 return a
 catch e = SQLException
 printException(e)
 say "online failed"
 return a
 end

(…)

Some more TheDataAccess, then …

Backend to Frontend

❖ So you saw the backend that starts the monitoring processes that get to the
payment data streams

❖ These fill the memory maps the front ends look at (there are as many Web
Browsers open as you want, these do not add overhead)

❖ The route here is browser page (.jsp), JSON API call, Viewer, TheGatherer,
and back again to display the widget

Browser Page

 <script type="text/javascript">
 google.load("visualization", "1", {packages:["table"]});
 google.setOnLoadCallback(drawTable);

 function drawTable() {
 var jsonData = $.ajax({
 url: "api/getThroughputData.jsp",
 dataType:"json",
 async: false
 }).responseText;

 var data = new google.visualization.DataTable(jsonData);

 var table = new google.visualization.Table(document.getElementById('table_div'));

 table.draw(data, {showRowNumber: true});
 }
 </script>

API Definition

<jsp:useBean id="tp" scope="page"
class="com.ing.sdp.elmo.ThroughputData" type="com.ing.sdp.elmo.ThroughputData"/>
<jsp:getProperty name="tp" property="out"/>

A Google Charts widget calls
the server url that defines that

API

The file contents of api/
getThroughputData.jsp

package com.ing.sdp.elmo

/**
 * Class Viewer implements the common superclass for all viewers
 *

 * Created on: vr, 13, mrt 2015 16:36:45 +0100
 */
class Viewer

 properties public
 g = TheGatherer

 /**
 * Default constructor
 */
 method Viewer() signals ClassNotfoundException
 this.g = TheGatherer.getInstance()
 return

Viewer base class provides TheGatherer singleton link to all Viewers

options nobinary
package com.ing.sdp.elmo

/**
 * Class ThroughputData implements...
 *

 * Created on: do, 19, feb 2015 22:05:31 -0400
 */
class ThroughputData extends Viewer

 method ThroughputData()
 super()

 method setOut()

 method getOut()
 out = -
 ' { '-
 '"cols": '-
 '['-
 ' {"id": "A", "label": "Name", "type": "string"}, '-
 ' {"id": "B", "label": "Status", "type": "string"}, '-
 ' {"id": "C", "label": "Last 30min", "type": "number"}, '-
 ' {"id": "D", "label": "Total Amount", "type": "number"}, '-
 ' {"id": "E", "label": "Last Order", "type": "string"}, '-
 ' {"id": "F", "label": "Query Time", "type": "string"} '-
 '], '-
 '"rows": ' -
 '['

 i = this.g.throughputArray.iterator()
 loop while i.hasNext()
 line = OnlineStatus i.next()
 if line = null then iterate
 if line.toString() = "" then iterate

 out = out '{"c":[{"v": "'line.getName.toString'", "f":null}, '-
 ' {"v": "'line.getStatus.toString'", "f": null}, '-
 ' {"v": 'line.getAant_30min', "f": null}, '-
 ' {"v": 'line.getTotaal_bedrag', "f": null}, '-
 ' {"v": "'line.getTijd_laatste_order'", "f": null}, '-
 ' {"v": "'line.getTijdstip_query'", "f": null} '-
 ']}, '
 end -- loop i

 out = out '], '-
 '"p": {"foo": "hello", "bar": "world!"} '-
 ' }'
 return out

The ThroughputData class is a Viewer

This does “JSON by hand”. It is no party
but you have to get it right only once.

It picks the live chart data out of the
throughputArray structure of

TheGatherer

Useful resources

❖ Google charts API demo page at:

❖ Browser development tools - debuggers. Safari, Chrome, Firefox - all have
their strong points and I really needed them all at one point to get the all the
JSON of the different live chart type widgets going.

❖ Of course Internet Explorer was the most troublesome, did not want to
update live data at all without some really obscure tweaks (thanks, Joris and
Leo!) - so if you really want IE, you need IE chops.

https://developers.google.com/chart/interactive/docs/gallery

https://developers.google.com/chart/interactive/docs/gallery

Useful resources
❖ Git repository for team cooperation is invaluable. We cooperated very

geographically dispersed (Amsterdam, Rotterdam, Arnhem, Aruba) and with
very few merge conflicts

❖ NetREXX: we developed on Windows, Linux, z/OS, with Notepad, UltraEdit,
Emacs, Eclipse, VI, ISPF/PDF: Don’t worry, be happy! So use the tools that
you like most.

❖ (None of the others in this 5-person team ever used NetREXX or Git; all are
fans now; ELMO was no full-time project, everyone had other - primary -
responsibilities).

What happened to ELMO in 2016 (after me leaving)
❖ ELMO is alive and well, and lives on a production server where he is well

looked after. He enjoys his connection to DB2 z/OS production, and in turn
looks after the large payment and booking systems, which themselves are
happier now also.

❖ ELMO won a software innovation price (“ING Team Craftsmanship
Award”) and my former co-workers earned a trip to Silicon Valley!

❖ Google charts was later built-out of ELMO and was replaced by an open
source live charts library due to privacy concerns; only some Javascript calls
and their JSON needed change.

Thanks for your attention.
Questions?

René Vincent Jansen, rvjansen@xs4all.nl

mailto:rvjansen@xs4all.nl

